Abstract
The transverse resonant tunneling transport and electric field domain formation in GaAs/AlGaAs superlattices were investigated in a strong tilted magnetic field. The magnetic field component parallel to structure layers causes intensive tunneling transition between Landau levels with Δn≠0, resulting in the considerable "inhomogeneous" broadening of intersubband tunneling resonance as well as in the shift of the resonance toward higher electric fields. This leads to noticeable changes of the I-V characteristics of the superlattice, namely to smoothing of the periodic NDC structure on plateau-like regions caused by formation of the electric field domains and to the shift of the plateaus toward the higher applied voltage. The predicted behavior of the I-V characteristics of the structures in magnetic field was found experimentally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have