Abstract
Transmission electron microscopy (TEM) is a central technique for the characterisation of materials at the atomic scale. However, it requires the sample to be thin enough to be electron transparent, imposing strict limitations when studying thick structures in plan-view. Here we present a method for sequential plan-view TEM that allows one to image complex structures at various depths. The approach consists of performing an iterative series of front-side ion milling followed by TEM imaging. We show it is possible to image how the sample properties vary with depth up to several microns below the surface, with no degradation of the sample and imaging conditions throughout the experiment. We apply this approach to 3D cavities in mesoporous GaN distributed Bragg reflectors, demonstrating the ability to characterise the morphology of the pores, local crystal features and chemical composition through the multilayer structure. The same workflow can be applied to a variety of complex micron-scale systems which are by nature too thick for standard TEM analysis, and can also be adapted for profiling samples in cross-section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.