Abstract

Computing smoothing distributions, the distributions of one or more states conditional on past, present, and future observations is a recurring problem when operating on general hidden Markov models. The aim of this paper is to provide a foundation of particle-based approximation of such distributions and to analyze, in a common unifying framework, different schemes producing such approximations. In this setting, general convergence results, including exponential deviation inequalities and central limit theorems, are established. In particular, time uniform bounds on the marginal smoothing error are obtained under appropriate mixing conditions on the transition kernel of the latent chain. In addition, we propose an algorithm approximating the joint smoothing distribution at a cost that grows only linearly with the number of particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.