Abstract

This paper deals with the problem of estimating expectations of sums of additive functionals under the joint smoothing distribution in general hidden Markov models. Computing such expectations is a key ingredient in any kind of expectation-maximization-based parameter inference in models of this sort. The paper presents a computationally efficient algorithm for online estimation of these expectations in a forward manner. The proposed algorithm has a linear computational complexity in the number of particles and does not require old particles and weights to be stored during the computations. The algorithm avoids completely the well-known particle path degeneracy problem of the standard forward smoother. This makes it highly applicable within the framework of online expectation-maximization methods. The simulations show that the proposed algorithm provides the same precision as existing algorithms at a considerably lower computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.