Abstract

The fundamental core of chemistry is to create new substances, and numerous complex reactions may be involved in chemical conversions. Nevertheless, clarifying the mechanisms of these complex reactions remains challenging, thereby causing insufficiencies in the fundamentals to guide new substance creation. This work proposes and emphasizes a strategy of sequential molecular dynamics simulations (SMDSs) toward complex chemical reactions. The strategy is successfully demonstrated by clarifying a complex graphitization process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), whose mechanism has not been imaged by a single simulation alone. We conducted SMDSs with a molecular reactive force field, ReaxFF, to resemble the cook-off of TATB, i.e., a sequence of heating, expansion, and cooling acting on TATB. Graphitization is found to sequentially undergo TATB molecular decay, clustering, cluster enlargement to C sheets (sheeting), and layered stacking of C sheets, along with phase separation. Moreover, the struc...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.