Abstract

This paper presents a method of multi-level logic optimization for combinational and synchronous sequential logic. The circuits are optimized through iterative addition and removal of redundancies. Among the large number of possible connections that can be added, the proposed method can efficiently identify those connections that would create more redundancies and, thus, would result in a smaller network. This is done with the use of combinational and sequential ATPG techniques based up the concept of mandatory assignments. Experiments on ISCAS-85 combinational benchmark circuits show that best results are obtained for most of them. For sequential circuits, experimental results on MCNC FSM benchmarks and ISCAS-89 sequential benchmark circuits show that a significant amount of area reduction can be achieved beyond combinational optimization and sequential redundancy removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.