Abstract

The sequential lateral solidification (SLS) process is an excimer-laser projection-based scheme for crystallization of thin films on amorphous substrates. This method can be used to readily produce a wide range of microstructures through manipulation of grain boundary placement within the crystallized material. In this paper, we focus on the 2-shot SLS process for crystallization of thin Si films for thin-film transistor (TFT) applications. We have investigated the effect of process parameter variation on the resulting microstructure, as well as on the performance of TFTs fabricated on the material. The 2-shot SLS microstructure was further engineered to reduce anisotropy of the TFT performance relative to the lateral growth direction using additional laser scans. Through this method, we were able to improve the mobility directionality ratio between devices with majority carrier flow parallel and perpendicular to the lateral growth direction, respectively, from 0.3 to over 0.7. Post-SLS process thinning and planarization of the Si surface was used to improve the uniformity and performance of the TFT devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.