Abstract

The problem of sequential formation control in multiagent systems is studied in this paper, where a team of agents is required to establish needed formations in order at user-defined times. To address this problem, our contribution is a finite-time distributed control architecture predicated on multiplex networks over directed graph topologies. The key feature of the multiplex networks is that it allows leader agent(s) to spatially alter the size and orientation of the resulting formation without requiring global information exchange ability. In addition, the key feature of the finite-time approach is to ensure that the overall multiagent system establishes a particular formation determined by the leader agent(s) at user-defined times. System-theoretical analysis of the proposed architecture is given using the time transformation approach along with Lyapunov stability theory, and an illustrative numerical example is also included to demonstrate the ability of the proposed architecture in addressing the sequential formation control problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call