Abstract
A microfluidic chip carrying three reaction chambers was designed and constructed to examine sequential multiple enzymatic reactions. The synthesis of oligosaccharides in living cells is carried out in the Golgi apparatus where multiple enzymes such as glycosidase and glycosyltransferases act on a variety of substrates to generate glycoconjugates that include glycolipids and glycoproteins. The regulatory mechanism of the process however remains unknown. A microchip-based analysis platform may provide a valuable tool with which to address the issue by mimicking the Golgi function. We thus examined 3 sequential glycosyltransfer reactions on a chip, and succeeded in the synthesis of a tetrasaccharide using immobilized enzymes. Also, the kinetic parameters for a recently identified glycosyltransferase, proteoglycan GalT-I, were obtained for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.