Abstract
Engineering change order (ECO) is pivotal in rectifying late design changes that occur commonly due to ever-increasing system complexity. Existing functional ECO methods focus on combinational equivalence assuming a known input correspondence between the old implementation and new specification. They are inadequate for rectifying circuits under sequential transformations. This inadequacy hinders the utilization of powerful and effective sequential optimization methods using retiming and resynthesis. As retiming and/or resynthesis gains increasing adoption in industry, incorporating sequential ECO techniques into the hardware design flow becomes essential. In this paper, we provide the first attempt to extend ECO to designs under retiming and resynthesis in an industrial flow by leveraging conventional combinational ECO engine. Experimental results over industrial ECO benchmarks justify the promising practicality of our methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.