Abstract

Organic-inorganic hybrid perovskite solar cells (PSCs) have reached a power conversion efficiency of 22.1% in a short period (∼7 years), which has been obtainable in silicon-based solar cells for decades. The high power conversion efficiency and simple fabrication process render perovskite solar cells as potential future power generators, after overcoming the lack of long-term stability, for which the deposition of void-free and pore-filled perovskite films on mesoporous TiO2 layers is the key pursuit. In this research, we developed a sequential dip-spin coating method in which the perovskite solution can easily infiltrate the pores within the TiO2 nanoparticulate layer, and the resultant film has large crystalline grains without voids between them. As a result, a higher short circuit current is achieved owing to the large interfacial area of TiO2/perovskite, along with enhanced power conversion efficiency, compared to the conventional spin coating method. The as-made pore-filled and void-free perovskite film avoids intrinsic moisture and air and can effectively protect the diffusion of degradation factors into the perovskite film, which is advantageous for the long-term stability of PSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.