Abstract
Linear dimensionality reduction techniques are powerful tools for image analysis as they allow the identification of important features in a data set. In particular, nonnegative matrix factorization (NMF) has become very popular as it is able to extract sparse, localized and easily interpretable features by imposing an additive combination of nonnegative basis elements. Nonnegative matrix underapproximation (NMU) is a closely related technique that has the advantage to identify features sequentially. In this paper, we propose a variant of NMU that is particularly well suited for image analysis as it incorporates the spatial information, that is, it takes into account the fact that neighboring pixels are more likely to be contained in the same features, and favors the extraction of localized features by looking for sparse basis elements. We show that our new approach competes favorably with comparable state-of-the-art techniques on synthetic, facial and hyperspectral image data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.