Abstract
We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-\`a-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.