Abstract

This article addresses the transient change detection problem. It is assumed that a change occurs at an unknown (but nonrandom) change-point and the duration of post-change period is finite and known. A latent detection—that is, a detection that occurs after signal disappearance—is considered as a missed detection. A new optimality criterion adapted to the detection of transient changes involves the minimization of the worst-case probability of missed detection under constraint on the false alarm rate for a given period. A suboptimal sequential transient change detection algorithm is proposed. It is based on a window-limited cumulative sum (CUSUM) test. An upper bound for the worst-case probability of missed detection and a lower and an upper bound for the false alarm rate are proposed. Based on these bounds, the window-limited CUSUM test is optimized with respect to the proposed criterion. The developed algorithm and theoretical findings are applied to drinking water distribution network monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call