Abstract
We look at a sequence of Bernoulli random variables where the success rates change from θ 1 to θ 2. We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is known. We calculate the probability that the change has started and completed. We also look at optimal stopping rules assuming that there is a cost for a false alarm and a cost per time unit to stop late.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.