Abstract

Nutritional signals strictly control post-embryonic development in insects. Dietary carbohydrates are hydrolyzed to monosaccharides in the gut and then transported into the hemolymph. These monosaccharides in hemolymph are rapidly taken up by tissues and utilized in glycolysis, the pentose phosphate shunt, and glycogen or trehalose synthesis. These metabolic pathways are essential for nutrient metabolism; therefore, the control of carbohydrate digestion is indispensable for maintaining energy supply during development. Carbohydrate digestion was believed to be controlled by dietary mechanisms. We previously reported that hormonal and developmental controls participate in the regulation of carbohydrate digestion during larval-pupal metamorphosis. However, it is unclear whether this regulatory mechanism also works during larval-larval molting and inter-molt feeding period. Here, we show that control mechanisms of the carbohydrate digestion show sequential changes that are controlled by different mechanisms. In the penultimate larval instar, carbohydrate hydrolysis activity changed depending on developmental progress and dietary state. Maltose- and sucrose-hydrolysis activity were suppressed by ecdysteroid, an insect steroid hormone. During the inter-molt feeding period, carbohydrate hydrolysis activities were grouped as either nutrient-sensitive or nutrient-insensitive. Although the activity in both groups was suppressed by ecdysteroid, this hormonal regulatory machinery remains in an "off-state" because ecdysteroid is scarce during the feeding period, suggesting that the carbohydrate digestion system is exclusively regulated by the dietary state during inter-molt feeding period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call