Abstract

A technique for empirical optimisation is presented in which a sequence of experimental designs each in the form of a regular or irregular simplex is used, each simplex having all vertices but one in common with the preceding simplex, and being completed by one new point. Reasons for the choice of design are outlined, and a formal procedure given. The performance of the technique in the presence and absence of error is studied and it is shown (a) that in the presence of error the rate of advance is inversely proportional to the error standard deviation, so that replication of observations is not beneficial, and (b) that the “efficiency” of the technique appears to increase in direct proportion to the number of factors investigated. It is also noted that, since the direction of movement from each simplex is dependent solely on the ranking of the observations, the technique may be used even in circumstances when a response cannot be quantitatively assessed. Attention is drawn to the ease with which second-o...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.