Abstract

AbstractIt is nowadays widely accepted that genetic algorithms (GAs) are powerful tools in variable selection and that after suitable modifications they can also be powerful in detecting the most relevant spectral regions for multivariate calibration. One of the main limitations of GAs is related to the fact that when spectral intensities are measured at a very large number of wavelengths the search domain increases correspondingly and therefore the detection of the relevant regions is much more difficult. A modification of interval partial least squares (iPLS), designated backward interval PLS (biPLS), is developed and studied such that it can detect and remove the least relevant regions, thereby reducing the search domain to a size that GAs can handle easily. In this paper the application to two different spectroscopic data sets will be shown: infrared spectroscopic analysis of polymer film additives and determination of the contents of erucic acid and total fatty acids in brassica seeds by near‐infrared spectroscopy. The developed method is compared with model performances based on expert selection of variables as well as with results from application of the previously developed GA‐PLS method. The sequential application of biPLS and GA‐PLS has proven successful, and comparable or better results have been obtained, introducing a more automatic region selection procedure and a substantial decrease in computation time. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.