Abstract
Abstract In numerical weather prediction (NWP), the uncertainty about the future state of the atmosphere is described by a set of forecasts (called an ensemble). All ensembles have deficiencies that can be corrected via statistical post-processing methods. Several ensembles, based on different NWP models, exist and may be corrected using different statistical methods. These raw or post-processed ensembles can thus be combined. The theory of prediction with expert advice allows us to build combination algorithms with theoretical guarantees on the forecast performance. We adapt this theory to the case of probabilistic forecasts issued as stepwise cumulative distribution functions, computed from raw and post-processed ensembles. The theory is applied to combine wind speed ensemble forecasts. The second goal of this study is to explore the use of two forecast performance criteria: the continuous ranked probability score (CRPS) and the Jolliffe–Primo test. The usual way to build skilful probabilistic forecasts is to minimize the CRPS. Minimizing the CRPS may not produce reliable forecasts according to the Jolliffe–Primo test. The Jolliffe–Primo test generally selects reliable forecasts, but could lead to issuing suboptimal forecasts in terms of CRPS. We propose to use both criteria to achieve reliable and skilful probabilistic forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.