Abstract
Ensemble forecasts are developed to assess and convey uncertainty in weather forecasts. Unfortunately, ensemble prediction systems (EPS) usually underestimate uncertainty and thus are statistically not reliable. In this study, we apply the Bayesian Processor of Ensemble (BPE), which is an extension of the statistical post-processing method of Bayesian Processor of Forecasts (BPF) to calibrate ensemble forecasts. BPE is performed to obtain a posterior function through the combination of a regression-based likelihood function and a climatological prior. The method is applied to 1–10 day lead time EPS forecasts from the NCEP Global Ensemble Forecast System (GEFS) and the Canadian Meteorological Centre (CMC) of 2-m temperature at 24 stations over the continental United States (CONUS). Continuous rank probability score is used to evaluate the performance of posterior probability forecasts. Results show that post-processed ensembles are much better calibrated than the raw ensemble. In addition, merging two ensemble forecasts by incorporating the CMC ensemble mean as another predictor in addition to GEFS ensemble forecasts is shown to provide more skillful and reliable probabilistic forecasts. BPE has a broad potential use in the future given its flexible framework for calibrating and combining ensemble forecast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.