Abstract

Phylogenetic relationships among snails (Caenogastropoda) are still unresolved, and many taxonomic categories remain non-monophyletic. Paraphyly has been reported within a large family of freshwater snails, Viviparidae, where the taxonomic status of several species remains questionable. As many endemic Chinese viviparid species have become endangered during the last few decades, this presents a major obstacle for conservation efforts. Mitochondrial genomes (mitogenomes) carry a large amount of data, so they can often provide a much higher resolution for phylogenetic analyses in comparison to the traditionally used molecular markers. To help resolve their phylogenetic relationships, the complete mitogenomes of eight Chinese viviparid snails, Viviparus chui, Cipangopaludina chinensis, C. ussuriensis, C. dianchiensis (endangered), Margarya melanioides (endangered), M. monodi (critically endangered), Bellamya quadrata and B. aeruginosa, were sequenced and compared to almost all of the available caenogastropod mitogenomes. Viviparidae possess the largest mitogenomes (16 392 to 18 544 bp), exhibit the highest A+T bias (72.5% on average), and some exhibit unique gene orders (a rearrangement of the standard MYCWQGE box), among the Caenogastropoda. Apart from the Vermetidae family and Cerithioidea superfamily, which possessed unique gene orders, the remaining studied caenogastropod mitogenomes exhibited highly conserved gene order, with minimal variations. Maximum likelihood and Bayesian inference analyses, used to reconstruct the phylogenetic relationships among 49 almost complete (all 37 genes) caenogastropod mitogenomes, produced almost identical tree topologies. Viviparidae were divided into three clades: a) Margarya and Cipangopaludina (except C. ussuriensis), b) Bellamya and C. ussuriensis, c) Viviparus chui. Our results present evidence that some Cipangopaludina species (dianchiensis and cathayensis) should be renamed into the senior genus Margarya. The phylogenetic resolution obtained in this study is insufficient to fully resolve the relationships within the ‘b’ clade, but if C. chinensis proves to be a valid representative of the genus, C. ussuriensis may have to be reassigned a different genus (possibly Bellamya, or even a new genus). Non-monophyly also remains pervasive among the higher (above the family-level) Caenogastropod taxonomic classes. Gene order distance matrix produced a different phylogenetic signal from the nucleotide sequences, which indicates a limited usability of this approach for inferring caenogastropod phylogenies. As phenotypic homoplasy appears to be widespread among some viviparid genera, in order to effectively protect the rapidly diminishing endemic Viviparid populations in China, further detailed molecular phylogenetic studies are urgently needed to resolve the taxonomic status of several species.

Highlights

  • The majority of all living gastropods are classified within the Caenogastropoda (Mollusca: Gastropoda) clade, divided into approximately 136 extant families, mostly comprised of sea and freshwater snails [1]

  • Five different species were found in Lake Dianchi (Margarya melanioides, M. monodi, Cipangopaludina dianchiensis, C. chinensis and Bellamya aeruginosa), three in the Zhangwei River (C. chinensis, B. aeruginosa and B. quadrata), and two in the Amur River (C. ussuriensis and Viviparus chui), adding up to eight different species

  • Sequencing and analysis of the complete mitogenomes of eight viviparid snail species undertaken here show that some Viviparidae possess a unique gene order, marked by a rearrangement of the standard caenogastropod MYCWQGE box

Read more

Summary

Introduction

The majority of all living gastropods are classified within the Caenogastropoda (Mollusca: Gastropoda) clade, divided into approximately 136 extant families, mostly comprised of sea and freshwater snails [1]. The availability of genetic data for molecular phylogenetic studies is crucial for biodiversity conservation [18], and mitochondrial phylogenomics is often capable of providing a phylogenetic resolution superior to the traditionally used single molecular markers [19,20,21] This approach is not without limitations [22], mitochondrial phylogenomics has successfully addressed a broad range of phylogenetic questions [20], including those among the Gastropoda [17, 21, 23,24,25]. One complete viviparid mitogenome has been published so far, Cipangopaludina cathayensis [28], and two more are currently (Feb 2017) available from the GenBank: Bellamya quadrata and another C. cathayensis (both unpublished) This scarcity of publicly available mitogenomic data hampers the understanding of viviparid phylogenetics, which presents a major obstacle for the conservation of rapidly shrinking endemic Chinese viviparid populations. The objective of this study was to generate a large amount of mitogenomic data and use them to attempt to understand better the evolution of Caenogastropod mitochondrial genomes, as well as the taxonomic and phylogenetic relationships within the Viviparidae family

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call