Abstract

The regulation of messenger RNA levels in mammalian cells can be achieved by the modulation of synthesis and degradation rates. Metabolic RNA-labeling experiments in bulk have quantified these rates using relatively homogeneous cell populations. However, to determine these rates during complex dynamical processes, for instance during cellular differentiation, single-cell resolution is required. Therefore, we developed a method that simultaneously quantifies metabolically labeled and preexisting unlabeled transcripts in thousands of individual cells. We determined synthesis and degradation rates during the cell cycle and during differentiation of intestinal stem cells, revealing major regulatory strategies. These strategies have distinct consequences for controlling the dynamic range and precision of gene expression. These findings advance our understanding of how individual cells in heterogeneous populations shape their gene expression dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.