Abstract

The breakdown of RNA and of long-lived proteins in rat liver is believed to occur largely within the lysosomal-vacuolar system. Both processes are induced by amino acid lack and suppressed by insulin, and in all circumstances a consistent lag of 15-20 min was observed between the introduction of a physiological regulator and onset of the degradative response. This lag has allowed us to determine rates of liver RNA degradation in vivo during brief cyclic perfusions, as was done previously for long-lived-protein breakdown [Hutson & Mortimore (1982) J. Biol. Chem. 257, 9548-9554]. Degradation was measured from the release of [14C]cytidine in livers of rats previously labelled in vivo with [6-14C]orotic acid. Release was linear and unaffected by physiological regulators between 2 and 12 min of perfusion. In contrast with protein breakdown, no short-lived component was observed. In animals trained to feed between 16:00 and 20:00 h, the content of liver RNA fell at an average rate of 0.26 mg/h per 100 g initial body wt. between 07:00 and 16:00 h, a loss that was within 9% of that predicted from the net release (total release minus reutilization) of cytidine in vivo. In addition, the total rate of RNA degradation determined at the end of the meal was only 12% of that at the start of the post-absorptive period 14 h later (2.1 versus 17.1%/day). This finding is fully consistent with a lysosomal mechanism for RNA degradation, since autophagy is strongly suppressed by food intake. This approach provides a comparatively simple means of approximating moment-to-moment rates of RNA degradation in the rat liver in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call