Abstract
The xyl operon of a gram-positive bacterium, Tetragenococcus halophila (previously called Pediococcus halophilus), was cloned and sequenced. The DNA was about 7.7 kb long and contained genes for a ribose binding protein and part of a ribose transporter, xylR (a putative regulatory gene), and the xyl operon, along with its regulatory region and transcription termination signal, in this order. The DNA was AT rich, the GC content being 35.8%, consistent with the GC content of this gram-positive bacterium. The xyl operon consisted of three genes, xylA, encoding a xylose isomerase, xylB, encoding a xylulose kinase, and xylE, encoding a xylose transporter, with predicted molecular weights of 49,400, 56,400, and 51,600, respectively. The deduced amino acid sequences of the XylR, XylA, XylB, and XylE proteins were similar to those of the corresponding proteins in other gram-positive and -negative bacteria, the similarities being 37 to 64%. Each polypeptide of XylB and XylE was expressed functionally in Escherichia coli. XylE transported D-xylose in a sodium ion-dependent manner, suggesting that it is the first described xylose/Na+ symporter. The XylR protein contained a consensus sequence for binding catabolites of glucose, such as glucose-6-phosphate, which has been discovered in glucose and fructose kinases in bacteria. Correspondingly, the regulatory region of this operon contained a putative binding site of XylR with a palindromic structure. Furthermore, it contained a consensus sequence, CRE (catabolite-responsive element), for binding CcpA (catabolite control protein A). We speculate that the transcriptional regulation of this operon resembles the regulation of catabolite-repressible operons such as the amy, lev, xyl, and gnt operons in various gram-positive bacteria. We discuss the significance of the regulation of gene expression of this operon in T. halophila.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have