Abstract

Glycogen and trehalose are important energy source and key regulation factors in the development of many organisms' pass through energy metabolism, including bacteria, fungi, and insects. To study glycogen metabolism pathway in Spodoptera exigua, first cDNAs for glycogen synthase (SpoexGS) and glycogen phosphorylase (SpoexGP) were cloned from S. exigua. SpoexGS cDNA contains an open reading frame of 2,010 nucleotides encoding a protein of 669 amino acids with a predicted molecular mass of 76.19 kDa and a pI of 5.84. SpoexGP contains an open reading frame of 2,946 nucleotides, which encodes a protein of 841 amino acids with a predicted molecular mass of approximately 96.63 kDa and a pI of 6.03. Second, Northern blotting revealed that SpoexGS and SpoexGP mRNAs were expressed in brain, fat body, mid-gut, Malpighian tubules, spermary, and tracheae of S. exigua. Expression patterns for SpoexGS and SpoexGP mRNAs were similar in fat body, but differed in whole body at different developmental stages. The last, under starvation conditions, SpoexGS and SpoexGP transcript expression rapidly decreased with increasing starvation time. When the starvation stress was removed, SpoexGS and SpoexGP mRNA levels were lower in the groups starved for 6 and 12 h than in the 24-h starvation and control groups. Treatment with excessive sugar intake led to higher levels of SpoexGS and SpoexGP transcripts after 12 h compared to the control group. These findings provide new data on the tissue distribution, expression patterns, and potential function of glycogen synthase and glycogen phosphorylase proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.