Abstract

Glucose, which plays a central role in providing energy for metabolism, is primarily stored as glycogen. The synthesis and degradation of glycogen are mainly initialized by glycogen synthase (GS) and glycogen phosphorylase (GP), respectively. The present study aimed to examine the glycogen metabolism in fish liver and gills during acute exposure to seawater. In tilapia (Oreochromis mossambicus) gill, GP, GS and glycogen were immunocytochemically colocalized in a specific group of glycogen-rich (GR) cells, which are adjacent to the gill's main ionocytes, mitochondrion-rich (MR) cells. Na+/K+-ATPase activity in the gills, protein expression and/or activity of GP and GS and the glycogen content of the gills and liver were examined in tilapia after their acute transfer from freshwater (FW) to 25 per thousand seawater (SW). Gill Na+/K+-ATPase activity rapidly increased immediately after SW transfer. Glycogen content in both the gills and liver were significantly depleted after SW transfer, but the depletion occurred earlier in gills than in the liver. Gill GP activity and protein expression were upregulated 1-3 h post-transfer and eventually recovered to the normal level as determined in the control group. At the same time, GS protein expression was downregulated. Similar changes in liver GP and GS protein expression were also observed but they occurred later at 6-12 h post-transfer. In conclusion, GR cells are initially stimulated to provide prompt energy for neighboring MR cells that trigger ion-secretion mechanisms. Several hours later, the liver begins to degrade its glycogen stores for the subsequent energy supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.