Abstract

The molecular basis for the DNA binding specificity of the thyroid transcription factor 1 homeodomain (TTF-1HD) has been investigated. Methylation and ethylation interference experiments show that the TTF-1HD alone recapitulates the DNA binding properties of the entire protein. Studies carried out with mutant derivatives of TTF-1HD indicate a precise correspondence of some of its amino acid residues with specific bases in its binding site, allowing a crude orientation of the TTF-1HD within the protein-DNA complex. TTF-1HD shows an overall geometry of interaction with DNA similar to that previously observed for Antennapedia class HDs, even though the binding specificities of these two types of HDs are distinct. We demonstrate that the crucial difference between the binding sites of Antennapedia class and TTF-1 HDs is in the motifs 5'-TAAT-3', recognized by Antennapedia, and 5'-CAAG-3', preferentially bound by TTF-1. Furthermore, the binding of wild type and mutants TTF-1 HD to oligonucleotides containing either 5'-TAAT-3' or 5'-CAAG-3' indicate that only in the presence of the latter motif the Gln50 in TTF-1 HD is utilized for DNA recognition. Since the Gln at position 50 is an essential determinant for DNA binding specificity for several other HDs that bind to 5'-TAAT-3' containing sequences, we suggest that utilization by different HDs of key residues may depend on the sequence context and probably follows a precise hierarchy of contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.