Abstract
BackgroundThe HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions.ResultsSpecific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC). A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes.ConclusionThe HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.
Highlights
The human immunodeficiency virus type 1 (HIV-1), the human malaria, Plasmodium vivax, and the monkey malaria, P. knowlesi, have ligands that bind to chemokine receptors and mediate cell invasion
Within subdomain 1 and this V3 loop are consensus BBXB heparin binding motifs (HBM), where B is a basic amino acid and X is any amino acid. This HBM is conserved in many Duffy Binding Ligand (DBL) family members, and we previously found that alanine substitutions at this site in Plasmodium vivax Duffy binding protein (PvDBP) and PkDBP abrogated Duffy antigen receptor for chemokines (DARC) binding
Some strains of HIV, such as MN, contain a consensus heparin binding motif in the V3 loop, and many X4 strains can be inhibited from infecting target cells by polyanions which may bind to the V3 loop
Summary
The human immunodeficiency virus type 1 (HIV-1), the human malaria, Plasmodium vivax, and the monkey malaria, P. knowlesi, have ligands that bind to chemokine receptors and mediate cell invasion. PvDBP, PkDBP, P. knowlesi b, and g proteins are members of a Duffy Binding Ligand (DBL) family of erythrocyte binding proteins with conserved regions of homology which bind to many receptors. Within subdomain 1 and this V3 loop are consensus BBXB heparin binding motifs (HBM), where B is a basic amino acid and X is any amino acid This HBM is conserved in many DBL family members, and we previously found that alanine substitutions at this site in PvDBP and PkDBP abrogated DARC binding. The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have