Abstract

The sequence selectivity of the DNA binding of the phenazinium dyes phenosafranin and safranin O have been investigated with four sequence-specific deoxyribopolynucleotides from spectroscopic and calorimetric studies. The alternating guanine-cytosine sequence selectivity of the dyes has been revealed from binding affinity values, circular dichroism, thermal melting, competition dialysis, and calorimetric results. The binding affinities of both the dyes to the polynucleotides were of the order of 10(5) M(-1), but the values were higher for the guanine-cytosine polynucleotides over adenine-thymine ones. Phenosafranin had a higher binding affinity compared to safranin O. Isothermal titration calorimetric studies revealed that the binding reactions were exothermic and favored by negative enthalpy and predominantly large positive entropy contributions in all cases except poly(dA)·poly(dT) where the profile was anomalous. Although charged, nonpolyelectrolytic contribution was revealed to be dominant to the free energy of binding. The negative heat capacity values obtained from the temperature dependence of enthalpy changes, which were higher for phenosafranin compared to safranin O, suggested significant hydrophobic contribution to the binding process. In aggregate, the data presents evidence for the alternating guanine-cytosine base pair selectivity of these phenazinium dyes and a stronger binding of phenosafranin over safranin O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call