Abstract

Binding of the phenothaizinium dye thionine with four sequence specific deoxyribopolynucleotides, poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT), and poly(dA).poly(dT) has been investigated by means of thermal helix melting, isothermal titration calorimetry, and differential scanning calorimetry experiments. The binding affinity values evaluated from isothermal titration calorimetry suggests that thionine exhibits the highest binding affinity to poly(dG-dC).poly(dG-dC). The binding to poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), and poly(dG).poly(dC) is exothermic and favoured by negative enthalpy changes while binding to poly(dA).poly(dT) is endothermic and anomalous. The values of heat capacity changes of the interaction are negative and in the range (−0.4 to −0.5) kJ · K −1 · mol −1. The binding is characterized by strong stabilization of the polynucleotides against thermal strand separation. The binding affinity values derived from thermal melting data are in excellent agreement with those obtained from isothermal titration calorimetry data. Insights into the energetic aspects and guanine–cytosine selectivity of the DNA interaction of thionine have been obtained from these studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.