Abstract

The cell-surface glycoprotein of halobacterium contains a sulfated repeating unit saccharide chain, similar to the mammalian glycosaminoglycans. The composition of a presumptive repeating pentasaccharide unit of this glycosaminoglycan is 1 GlcNAc, 1 GalNAc, 1 Gal, 1 GalA (where GalA represents galacturonic acid), 1 3-O-methyl-GalA, and 2 SO42-. Linkage to protein of this glycoconjugate involves the hitherto unique unit Asn-GalNAc, with the N-linked asparagine residue being the second NH2-terminal amino acid and part of the common N-linked glycosyl acceptor sequence Asn-X-Thr(Ser). Transfer of the completed, sulfated glycosaminoglycan from its lipid precursor to the protein occurs at the cell surface, and the presence of this sulfated saccharide chain in the cell-surface glycoprotein seems to be required to maintain the structural integrity of the rod-shaped halobacteria. In this paper, we report the complete saccharide structure of this N-linked glycosaminoglycan. This structure is deduced from chemical analyses of fragments that were isolated after hydrazinolysis and subsequent nitrous acid deamination or after mild acidic hydrolysis of purified Pronase-derived glycosaminoglycan-peptides. The halobacterial glycosaminoglycan consists, on the average, of 10 repeating pentasaccharide units of the following structure. (formula: see text) The reducing end N-acetylgalactosamine residue is linked directly to the asparagine, without a special saccharide linker region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.