Abstract

While much research has focused on the timing of individual plant phenological events, the sequence of phenological events has received considerably less attention. Here we identify drivers and patterns of flower and leaf emergence sequence (FLS) in deciduous tree species of the Great Lakes region of North America. Five hypotheses related to cold tolerance, water dynamics, seed mass, pollination syndrome, and xylem anatomy type were compared for their ability to explain FLS. Phylogenetic and geographic patterns of FLS were also assessed. We identified additional traits associated with FLS using Random Forest models. Of the hypotheses assessed, those related to species' water dynamics and seed mass had the greatest support. The spatial pattern of FLS was found to be strongly related to minimum monthly temperature and the phylogenetic pattern was clustered among species. Based on results from Random Forest models, species' fruiting characteristics were found to be the most important variables in explaining FLS. Our results show that FLS is related to a suite of plant traits and environmental tolerances. We emphasize the need to expand phenological research to include both the timing and sequence of plant's entire phenology, in particular in relation to plant physiology and global change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.