Abstract

While exponential separations are known between quantum and randomized communication complexity for partial functions (Raz, STOC 1999), the best known separation between these measures for a total function is quadratic, witnessed by the disjointness function. We give the first super-quadratic separation between quantum and randomized communication complexity for a total function, giving an example exhibiting a power 2.5 gap. We further present a 1.5 power separation between exact quantum and randomized communication complexity, improving on the previous ~1.15 separation by Ambainis (STOC 2013). Finally, we present a nearly optimal quadratic separation between randomized communication complexity and the logarithm of the partition number, improving upon the previous best power 1.5 separation due to G\"o\"os, Jayram, Pitassi, and Watson. Our results are the communication analogues of separations in query complexity proved using the recent cheat sheet framework of Aaronson, Ben-David, and Kothari (STOC 2016). Our main technical results are randomized communication and information complexity lower bounds for a family of functions, called lookup functions, that generalize and port the cheat sheet framework to communication complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.