Abstract

We investigate the power of the most important lower bound technique in randomized communication complexity, which is based on an evaluation of the maximal size of approximately monochromatic rectangles, with respect to arbitrary distributions on the inputs. While it is known that the 0-error version of this bound is polynomially tight for deterministic communication, nothing in this direction is known for constant error and randomized communication complexity. We first study a one-sided version of this bound and obtain that its value lies between the MA- and AM- complexities of the considered function. Hence the lower bound actually works for a (communication) complexity class between MA/spl cap/co - MA and AM/spl cap/co - AM, and allows to show that the MA-complexity of the disjointness problem is /spl Omega/(/spl radic/n). Following this we consider the conjecture that the lower bound method is polynomially tight for randomized communication complexity. First we disprove a distributional version of this conjecture. Then we give a combinatorial characterization of the value of the lower bound method, in which the optimization over all distributions is absent. This characterization is done by what we call a bounded error uniform threshold cover, and reduces showing tightness of the bound to the construction of an efficient protocol for a specific communication problem. We then study relaxations of bounded error uniform threshold covers, namely approximate majority covers and majority covers, and exhibit exponential separations between them. Each of these covers captures a lower bound method previously used for randomized communication complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.