Abstract

AbstractThis study presents a synergistic extraction and recovery of vanadium and tungsten by mixed extractants (LIX984 and N263) from an acid leaching solution which was obtained from spent denitrification catalysts by chlorination heat treatment and acid leaching. Through thrice counter‐flow extraction, 99.5% V and 99.7% W were extracted, while 3.0% Fe, 2.9% Ti, 2.1% P, and 3.3% Mg were co‐extracted at a LIX984:N263 volume content of 22.0%, the phase ratio of 2.5 and the mother liquor's pH of 2.5. Then, at 0.80 mol/l NaOH and a phase ratio of 1, 99.9% tungsten and 99.1% vanadium were stripped from the organic phase to the aqueous phase. Subsequently, the aqueous phase's tungsten of 99.3% and vanadium of 98.1% were separated as calcium tungstate and ammonium metavanadate, respectively. In contrast, the residual solutions containing tungsten and vanadium can be returned to the following purification separation process to recover the valuable metals from the solution. Roasting converts the precipitated calcium tungstate and ammonium metavanadate to V2O5 and WO3 products. In addition, the thermodynamic analysis found the separation and recovery of tungsten and vanadium from the acid leach solution with LIX984:N263 to be an exothermic process. This method can be effectively extended for the separation of vanadium and tungsten from spent denitrification catalysts by the proposed process and validates the conclusion that metals with similar properties can be extracted using a mixture of extractants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call