Abstract

The selectivity of microemulsion electrokinetic chromatography (MEEKC) was studied utilizing some uncharged model compounds like aromatic amides, steroids, and esters of nicotinic acid. The cosurfactant of the microemulsion was found to be the most important factor affecting the selectivity, and alteration between 6.6% of 1-propanol, 1-butanol, tetrahydrofuran, and 2-ethoxyethanol caused several substantial changes in the migration order. In addition, the nature of the surfactant was found to significantly affect the selectivity. In this case, changes in order of migration was observed by replacement of half the content of sodium dodecyl sulfate (SDS) with either sodium dioctyl sulfosuccinate (SDOSS), 3-(N,N-dimethylmyristylammonio) propanesulfonate (MAPS), polyoxyethylene sorbitan monolaurate (Tween 21), and polyoxyethylene 23 lauryl ether (Brij 35). MEEKC was also accomplished with 3.3% of the anionic surfactant sodium cholate and with the cationic surfactant N-cetyl-N,N,N-trimethylammonium bromide (CTMA). Both provided substantial differences in selectivity as compared to the SDS-based systems. With SDS as surfacant, the concentration was varied within 1.0-4.5%. Minor selectivity changes were observed as the concentration of the surfacant was reduced, but the major effect was a reduction in the total migration time. The organic solvent of the microemulsion droplets was found only to have minor impact on the selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.