Abstract

We have developed a ternary equation of state (EOS) model for the N(2)O/CO(2)/1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) system in order to understand separation of these gases using room-temperature ionic liquids (RTILs). The present model is based on a generic RK (Redlich-Kwong) EOS, with empirical interaction parameters for each binary system. The interaction parameters have been determined using our measured VLE (vapor-liquid equilibrium) data for N(2)O/[bmim][BF(4)] and CO(2)/[bmim][BF(4)] and literature data for N(2)O/CO(2). The binary EOS models for the N(2)O/[bmim][BF(4)] and CO(2)/[bmim][BF(4)] systems correctly predicted the liquid-liquid phase separation found in VLLE experiments. The validity of the ternary EOS model has been checked by conducting VLE experiments for the N(2)O/CO(2)/[bmim][BF(4)] system over a range in temperature from 296 to 315 K. With this EOS model, solubility (VLE) behavior has been calculated for various (T, P, and feed compositions) conditions. For both large and small N(2)O/CO(2) feed ratios, the N(2)O/CO(2) gas selectivity [α(N(2)O/CO(2)) = (y(N(2)O)/x(N(2)O))/(y(CO(2))/x(CO(2)))] is α = 1.4-1.5, compared with (α = 0.96-0.98) in the absence of ionic liquid. While the concentration of the ionic liquid does not affect the selectivity, the addition of an ionic liquid provides the only practical means of separating CO(2) and N(2)O.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.