Abstract

We study motion of small particles in turbulence when the particle relaxation time falls in the range of inertial time scales of the flow. Because of inertia, particles drift relative to the fluid. We demonstrate that the collective drift of two close particles makes them see local velocity increments fluctuate fast. This allows us to introduce Langevin description for separation dynamics. We describe the behavior of the Lyapunov exponent and give the analogue of Richardson's law for separation above viscous scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.