Abstract
ABSTRACTComplete CO2/CH4 gas separation was aimed in this study. Accordingly, asymmetric neat polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) blend membranes were prepared by wet/wet phase inversion technique. The effects of two different variables such as type of external nonsolvent and type of solvent on morphology and gas separation ability of neat PSF membranes were examined. Moreover, the influence of PVP concentration on structure, thermal properties, and gas separation properties of PSF/PVP blend membrane were tested. The SEM results presented the variation in membrane morphology in different membrane preparation conditions. Atomic forced microscopic images displayed that surface roughness parameters increased significantly in higher PVP loading and then gas separation properties of membrane improved. Thermal gravimetric analysis confirms higher thermal stability of membrane in higher PVP loading. Differential scanning calorimetric results prove miscibility and compatibility of PSF and PVP in the blend membrane. The permeation results indicate that, the CO2 permeance through prepared PSF membrane reached the maximum (275 ± 1 GPU) using 1‐methyl‐2‐pyrrolidone as a solvent and butanol (BuOH) as an external nonsolvent. While, a higher CO2/CH4 selectivity (5.75 ± 0.1) was obtained using N‐N‐dimethyl‐acetamide (DMAc) as a solvent and propanol (PrOH) as an external nonsolvent. The obtained results show that PSF/PVP blend membrane containing 10 wt % of PVP was able to separate CO2 from CH4 completely up to three bar as feed pressure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1139‐1147, 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.