Abstract

Isopropyl alcohol and ethyl acetate can be used to produce degradable and renewable fuel. Since isopropyl alcohol + ethyl acetate can form an azeotropic mixture, it is a tough task to separate the binary mixture by general distillation. In this work, extractive distillation process with N, N-dimethylformamide and dimethyl sulfoxide as entrainers was adopted to separate this azeotrope. The binary and ternary vapor-liquid equilibrium data for (isopropyl alcohol + N, N-dimethylformamide), (ethyl acetate + dimethyl sulfoxide), (isopropyl alcohol + ethyl acetate + N, N-dimethylformamide) and (isopropyl alcohol + ethyl acetate + dimethyl sulfoxide) were determined under 101.3 kPa. Meanwhile, the interaction energies between the molecules were calculated to provide the theoretical insight into the separation of the azeotrope of (EA + IPA) by the entrainers. In addition, the NRTL, UNIQUAC and Wilson models were used to fit the determined binary VLE data. The ternary VLE data for (isopropyl alcohol + ethyl acetate + N, N-dimethylformamide) and (isopropyl alcohol + ethyl acetate + dimethyl sulfoxide) were predicted using the NRTL, UNIQUAC and Wilson models with the parameters regressed from the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call