Abstract

The separation of cyclic aliphatics of high purity, which are produced from hydrogenation of the corresponding aromatics, is highly desired in the chemical industry. An energy-efficient and environmentally friendly adsorptive separation method using nonporous adaptive crystals of perethylated pillar[5]arene (EtP5) and pillar[6]arene (EtP6) is described. Adaptive EtP5 crystals separate toluene from methylcyclohexane with 98.8 % purity, while adaptive EtP6 crystals separate methylcyclohexane from toluene with 99.2 % purity. The selectivities come from the stability of new EtP5 and EtP6 crystal structures upon capture of toluene and methylcyclohexane, respectively. The reversible transformations between nonporous guest-free EtP5 or EtP6 structures and guest-loaded structures make them highly recyclable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.