Abstract

AbstractThe separation of cyclic aliphatics of high purity, which are produced from hydrogenation of the corresponding aromatics, is highly desired in the chemical industry. An energy‐efficient and environmentally friendly adsorptive separation method using nonporous adaptive crystals of perethylated pillar[5]arene (EtP5) and pillar[6]arene (EtP6) is described. Adaptive EtP5 crystals separate toluene from methylcyclohexane with 98.8 % purity, while adaptive EtP6 crystals separate methylcyclohexane from toluene with 99.2 % purity. The selectivities come from the stability of new EtP5 and EtP6 crystal structures upon capture of toluene and methylcyclohexane, respectively. The reversible transformations between nonporous guest‐free EtP5 or EtP6 structures and guest‐loaded structures make them highly recyclable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.