Abstract

This research demonstrates the preparation of composite membranes containing graphene oxide (GO) and investigates the separation mechanisms of various salts and bovine serum albumin (BSA) solutions. A microporous polyvinylidene fluoride-polyacrylic acid-GO (PVDF-PAA-GO) separation layer was fabricated on non-woven support. The GO-incorporating composite resulted in enlarged pore size (0.16 μm) compared with the control membrane (0.12 μm). The zeta potential of the GO composite was reduced to -31 from -19 mV. The resulting membranes with and without GO were examined for water permeability and rejection efficiency with single salt and BSA solutions. Using the non-woven/PVDF-PAA composite, the permeance values were 88-190 kg/m2hMPa, and the salt rejection coefficients were 9-28% for Na2SO4, MgCl2, MgSO4, and NaCl solutions. These salt removals were based on the Donnan exclusion mechanism considering the ion radii and membrane pore size. Incorporating GO into the separation layer exhibited limited impacts on the filtration of salt solutions, but significantly reduced BSA membrane adhesion and increased permeance. The negatively charged protein reached almost complete removal (98.4%) from the highly negatively charged GO-containing membrane. The GO additive improved the anti-fouling property of the composite membrane and enhanced BSA separation from the salt solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.