Abstract

An angle-resolved photoemission spectroscopy (ARPES) study is reported on a Mott insulator NiGa2S4 in which Ni2+ (S=1) ions form a triangular lattice and the Ni spins do not order even in its ground state. The first ARPES study on the two-dimensional spin-disordered system shows that low-energy hole dynamics at high temperatures is characterized by wave vectors Q(E) which are different from wave vectors Q(M) dominating low-energy spin excitations at low temperatures. The unexpected difference between Q(E) and Q(M) is deeply related to charge fluctuation across the Mott gap in the frustrated lattice and is a key issue to understand the spin-disordered ground states in Mott insulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.