Abstract

2-hydroxyglutaric aciduria is an inherited neurometabolic disorder with two major types: D-2-hydroxyglutaric aciduria and L-2-hydroxyglutaric aciduria. An easy and fast capillary electrophoresis system combined with a capacitively coupled contactless conductivity detection method was developed for the enantioseparation and determination of D- and L-2-hydroxyglutaric acid in urine. D- and L-2-hydroxyglutaric acids were separated using vancomycin as the chiral selector. The optimal separation conditions for enantiomers were achieved by the use of a buffer containing 50mM 4-(N-morpholino) butane sulfonic acid solution (pH 6.5), an electroosmotic flow modifier (0.001% [w/v] polybrene), and 30mM vancomycin as chiral selector. The analysis time was 6min under optimal conditions. The optimized and validated method was successfully implemented for quantifying D- and L-2-hydroxyglutaric aciduria in patients' urine, without any pretreatment step. The linearity of the method was determined to be in the range of 2-100mg/L for D- and L-2-hydroxyglutaric acid in urine. The precision (relative standard deviation%) was obtained at about 7%. For D- and L-2-hydroxyglutaric acids, the limits of detection were 0.567 and 0.497mg/L, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.