Abstract

Investigating silver-based nanoparticles (Ag-b-NPs) in environmental samples is challenging with current analytical techniques, owing to their low concentrations (ng L−1) in the presence of high quantities of dissolved Ag(I) species. sp-ICP-MS is a promising technique able to simultaneously determine the concentration and particle sizes of Ag-b-NPs even at concentrations of several ng L−1. However, sp-ICP-MS suffers from the coexistence of dissolved analyte species causing high background signals. These background signals cover particle signals and therefore limit the size detection limit (SDL) in sp-ICP-MS. Ag-b-NPs in environmental samples exhibit diameters of < 20 nm, whereas the current sp-ICP-MS approaches barely reach an SDL as low as 20 nm. Using a surfactant-mediated sample pre-treatment (improved cloud point extraction, iCPE), we were able to separate Ag-b-NPs in aqueous samples from dissolved Ag(I) species and enrich the NPs in the extract. By hyphenating iCPE to sp-ICP-MS, we were able to reach SDL values as low as 4.5 nm, thus paving the way for the successful monitoring of Ag-b-NPs in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call