Abstract

AbstractThe ability to separate cloud and drizzle returns in active remote sensing observations is important for understanding the microphysics of clouds and precipitation. Yet, robust separations remain challenging in radar remote sensing. Prior methods for cloud and drizzle separation for radar observations use the properties of the Doppler spectra such as skewness. However, these methods have challenges when the drizzle becomes dominant in the observation volume. This paper presents a parametric time domain method (PTDM) that separates cloud and drizzle using the Doppler spectra measurements without assuming any prior properties of cloud and drizzle. The advantage of PTDM is that it can estimate the signal properties in the time domain and can obtain the cloud and drizzle estimates simultaneously. Based on our radar signal simulations, the uncertainty in estimated power and velocity from PTDM are within 2 dB and 0.02 m s−1, respectively. We have also evaluated the PTDM algorithm using observations from the Atmospheric Radiation Measurement (ARM) Program W-band cloud radar in the Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP-MBL) campaign at the Azores in 2009–10. Two cases corresponding to light and moderate drizzling conditions are considered for the study. The statistics of the estimates obtained show that the PTDM method performs well in separating the cloud and drizzle returns. Finally, the estimated cloud and drizzle reflectivity from PTDM were used to retrieve their corresponding microphysical properties, showing that the retrieved liquid water path agrees to 25 g m−2 with the benchmark microwave method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call