Abstract
Belief propagation is a widely used incomplete optimization algorithm, whose main theoretical properties hold only under the assumptions that beliefs are not equal. Nevertheless, there is much evidence that equality between beliefs does occur. A method to overcome belief equality by using unary function-nodes is assumed to resolve the problem. We focus on Min-sum, the belief propagation version for solving constraint optimization problems. We prove that on a single cycle graph, belief equality can be avoided only when the algorithm converges to the optimal solution. In any other case, the unary function methods will not prevent equality, rendering some existing results in need of reassessment. We differentiate between belief equality, which includes equal beliefs in a single message, and assignment equality, that prevents a coherent selection of assignments to variables. We show the necessary and satisfying conditions for both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.