Abstract
We propose a generalization belief propagation (BP) decoding algorithm based on particle swarm optimization (PSO) to improve the performance of the polar codes. Through the analysis of the existing BP decoding algorithm, we first introduce a probability modifying factor to each node of the BP decoder, so as to enhance the error correcting capacity of the decoding. Then, we generalize the BP decoding algorithm based on these modifying factors and drive the probability update equations for the proposed decoding. Based on the new probability update equations, we show the intrinsic relationship of the existing decoding algorithms. Finally, in order to achieve the best performance, we formulate an optimization problem to find the optimal probability modifying factors for the proposed decoding algorithm. Furthermore, a method based on the modified PSO algorithm is also introduced to solve that optimization problem. Numerical results show that the proposed generalization BP decoding algorithm achieves better performance than that of the existing BP decoding, which suggests the effectiveness of the proposed decoding algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.