Abstract

Direct tunneling limits aggressive scaling of thermally grown oxides to about 1.6 nm, a thickness at which the tunneling current density Jg at 1 V is ∼1 A/cm2. This article demonstrates that stacked gate dielectrics prepared by remote plasma processing and including (i) ultrathin nitrided SiO2 interfacial layers and (ii) either silicon nitride or oxynitride bulk dielectrics can extend the equivalent oxide thickness to 1.1–1.0 nm before Jg exceeds 1 A/cm2. Significant reductions in direct tunneling are derived from (i) interface nitridation at the monolayer level and (ii) the increased physical thickness of the nitride or oxynitride alloy layers. The “portability” of the interface contribution is demonstrated by combining the nitrided SiO2 interface layers with transition-metal oxides, e.g., Ta2O5, in stacked gate dielectric structures and obtaining essentially the same reductions in tunneling current on n- and p-type substrates with respect to non-nitrided plasma-grown interface layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.